Activation of gaba a receptors with a nontoxic, brain penetrant small molecule sensitizes lung adenocarcinoma primary and brain metastatic tumor cells to radiation via autophagy induction

NEURO-ONCOLOGY(2022)

引用 0|浏览7
暂无评分
摘要
Abstract Most advanced-stage non-small cell lung cancer (NSCLC) patients have brain metastases that render a dismal prognosis. Treatment of metastatic brain lesions from NSCLC and other tumor types include radiation as part of a multimodal treatment regimen. Challenges in the application of radiotherapy include overcoming radiation resistance and reducing associated co-morbidities. Non-toxic therapeutics capable of sensitizing tumors to radiation are needed to improve survival and mitigate radiation side-effects. Many CNS and solid systemic tumors express ligand-gated ion channels, which may contribute to tumor growth. Leveraging ion channels is therefore a potential way of diminishing the spread of cancer. We find that NSCLC and its brain metastases express subunits of the type-A GABA-gated chloride channel or GABAA receptor. Importantly, patient-derived NSCLC cells have functional GABAA receptors. We identified a brain penetrant, small molecule activator of GABAA receptors (AMLAL-101), which alone impairs the viability of both primary NSCLC cells and brain metastatic cells. In addition, AMLAL-101 combined with radiation is a highly potent inducer of NSCLC cell death and clonogenic arrest. Using a human ex vivo model of NSCLC-on-chip, we assessed the efficacy and toxicity of AMLAL-101 relative to Docetaxel, an antimicrotubular agent used in treating advanced NSCLC. AMLAL-101 is as potent as Docetaxel but does not exhibit its toxic side effects. AMLAL-101 also potentiates radiation in vivo, significantly reducing lung adenocarcinoma xenograft tumor growth in mice, equivalent to docetaxel plus radiation. Mechanistically, AMLAL-101 activates GABAA receptors in NSCLC and synergizes with radiation by inducing an autophagic response that includes: (i) stabilization of Beclin-1, BNIP3L/NIX, and GABARAP; (ii) ATG7 upregulation; and (iii) utilization of ubiquitin-binding protein p62. Activating GABAA receptors in NSCLC and other tumor types may improve radiation efficacy and mitigate its toxic side effects in treating brain metastases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要