Implantation of Decellularized Extracellular Matrix with Resistance Training Effectively Repairs a Volumetric Muscle Loss

Exercise Science(2022)

引用 0|浏览2
暂无评分
摘要
PURPOSE Skeletal muscle has remarkable regenerative capacity in most minor injuries induced by mechanical laceration, overstretching, and toxins. However, volumetric muscle loss (VML) injury, a large volume of muscle loss beyond the self-repair capacity, causes functional disability and morphological deformities. This study investigated the effects of myofiber injection into a decellularized extracellular matrix (ECM) and resistance training (RT) on skeletal muscle regeneration following VML injury. METHODS 6-months-old male Fischer CDF rats and 2-months-old F344-Tg (UBC-EGFP) rats (myofiber donors) were used in this study. Approximately 20% of the mass of the lateral gastrocnemius (LGAS) was excised and replaced by ECM of similar dimensions. Thirty myofibers were injected into the injured region seven days post-injury. Ladder climbing (RT) was allowed 10 days post-defect surgery, and the rats were subjected to ladder climbing with a weight every third day for 6 weeks. RESULTS After 56 days of recovery and exercise training, the cross-sectional area (CSA) of intact muscle in the EXE group (5,104±92 μm2) increased significantly compared to that in the ECM (4,657±79 μm2) group. The number of blood vessels larger than 20 μm in diameter, capillaries excluded, showed a significant difference between the ECM+EXE (34.25±4.2) and ECM (21.75±3.89) groups. A significant reduction of fibrosis in the ECM+EXE (44.50±1.6%) group was observed compared to the ECM (69.25±1.9%) and ECM+FIB+EXE (63.00±1.7%) groups. Moreover, the small muscle fiber area within the transplanted ECM was significantly larger in the ECM+EXE (1.37±0.03 mm2) than in both the ECM (0.49±0.01 mm2) and ECM+FIB (0.62±0.01 mm2) groups. CONCLUSIONS These data suggest that ECM transplantation with RT effectively repairs VML by enhancing hypertrophy, angiogenesis, and myofiber infiltration throughout the entire ECM.
更多
查看译文
关键词
resistance training,skeletal muscle regeneration,satellite cells,extracellular matrix,angiogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要