谷歌浏览器插件
订阅小程序
在清言上使用

Dynamic simulation of aircraft electro-impulse de-icing using bond-based peridynamics

Advances in Mechanical Engineering(2022)

引用 0|浏览2
暂无评分
摘要
Electro-impulse de-icing is a lightweight type of mechanical de-icing system that consumes little energy, provides high reliability, and offers wide application prospects. In this study, the bond-based peridynamics theory was used to simulate the dynamic damage process and evolution law of aircraft electro-impulse de-icing. The ice layer was simplified as a brittle material that satisfies the linear elastic constitutive relation. A numerical analysis model of the ice layer, aircraft skin substrate, and their interface was established to simulate the dynamic responses under a high strain rate. Considering the anisotropy of ice adhesion on the substrate, the interfacial bonds were described as shear bonds and tensile bonds, and the critical elongations of the two were derived. The tensile and shear capacities of the ice on the substrate were then simulated using these critical elongations, and the peeling rates of single ice particles and interfacial ice layers were taken as indexes describing the efficacy of electro-impulse de-icing. The process of electro-impulse de-icing was then analyzed for an aluminum substrate with two adjacent clamped edges. Finally, the results of the peridynamic simulation were compared with those of existing experiments and finite element models to verify the effectiveness of the peridynamic approach.
更多
查看译文
关键词
Peridynamics,electro-impulse de-icing,bimaterial interface,damage simulation,engine bleed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要