Potential Application of Perovskite Structure for Water Treatment: Effects of Band Gap, Band Edges, and Lifetime of Charge Carrier for Photocatalysis

J. L. H. Clabel, J. Chacaliaza-Ricaldi,E. Marega

Frontiers in Nanotechnology(2022)

引用 2|浏览3
暂无评分
摘要
Perovskite structures have attracted scientific interest as a promising alternative for water treatment due to their unique structural, high oxidation activity, electronic stability, and optical properties. In addition, the photocatalytic activity of perovskite structures is higher than that of many transition metal compounds. A critical property that determines the high-performance photocatalytic and optical properties is the band gap, lifetime of carrier charge, and band edges relative to the redox potential. Thus, the synthesis/processing and study of the effect on the band gap, lifetime of carrier charge, and band edges relative to the redox potential in the development of high-performance photocatalysts for water treatment are critical. This review presents the basic physical principles of optical band gaps, their band gap tunability, potentials, and limitations in the applications for the water treatment. Furthermore, it reports recent advances in the synthesis process and comparatively examines the band gap effect in the photocatalytic response. In addition to the synthesis, the physical mechanisms associated with the change in the band gap have been discussed. Finally, the conclusions of this review, along with the current challenges of perovskites for photocatalysis, are presented.
更多
查看译文
关键词
photocatalysis,band gap,lifetime,water pollution,perovskite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要