Quantification of the Influence of Citrate/Fe(II) Molar Ratio on Hydroxyl Radical Production and Pollutant Degradation during Fe(II)-Catalyzed O2 and H2O2 Oxidation Processes

International Journal of Environmental Research and Public Health(2022)

引用 0|浏览0
暂无评分
摘要
Ligand-enhanced hydroxyl radical (•OH) production is an important strategy for Fe(II)-catalyzed O2 and H2O2 oxidation processes. However, the influence of the molar ratio of ligands to Fe(II) on •OH production remains elusive. This study employed citrate and inorganic dissolved Fe(II) (Fe(II)dis) as the representative ligand and Fe(II) species, respectively, to quantify this relationship. Results showed that •OH production was highly dependent on the citrate/Fe(II) molar ratio. For instance, for the oxygenation of Fe(II)dis, the •OH accumulations were 2.0–8.5, 3.4–28.5 and 8.1–42.3 μM at low (0.25–0.5), moderate (0.5–1), and high (1–2) citrate/Fe(II) molar ratios, respectively. At low citrate/Fe(II) molar ratio (<0.5), inorganic Fe(II)dis mainly contributed to •OH production, with the increase in the citrate/Fe(II) molar ratio to a high level (1–2), Fe(II)-citrate complex turned to the electron source for •OH production. The change in Fe(II) speciation with the increase of citrate/Fe(II) molar ratio elevated •OH production. For pollutant degradation, 1 mg/L phenol was degraded by 53.6% within 40 min during oxygenation of Fe(II)-citrate system (1:1) at pH 7. Our results suggest that a moderate molar ratio of ligand/Fe(II) (0.5–1) may be optimal for Fe(II)-catalyzed O2 and H2O2 oxidation processes.
更多
查看译文
关键词
hydroxyl radicals,Fe(II),citrate,molar ratio,oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要