Multifunctional Hybrid MoS2-PEGylated/Au Nanostructures with Potential Theranostic Applications in Biomedicine

Thiago R. S. Malagrino,Anna P. Godoy, Juliano M. Barbosa, Abner G. T. Lima, Nei C. O. Sousa, Jairo J. Pedrotti, Pamela S. Garcia,Roberto M. Paniago,Lídia M. Andrade,Sergio H. Domingues,Wellington M. Silva,Hélio Ribeiro,Jaime Taha-Tijerina

Nanomaterials(2022)

引用 0|浏览5
暂无评分
摘要
In this work, flower-like molybdenum disulfide (MoS2) microspheres were produced with polyethylene glycol (PEG) to form MoS2-PEG. Likewise, gold nanoparticles (AuNPs) were added to form MoS2-PEG/Au to investigate its potential application as a theranostic nanomaterial. These nanomaterials were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoelectron X-ray spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), cyclic voltammetry and impedance spectroscopy. The produced hierarchical MoS2-PEG/Au microstructures showed an average diameter of 400 nm containing distributed gold nanoparticles, with great cellular viability on tumoral and non-tumoral cells. This aspect makes them with multifunctional characteristics with potential application for cancer diagnosis and therapy. Through the complete morphological and physicochemical characterization, it was possible to observe that both MoS2-PEG and MoS2-PEG/Au showed good chemical stability and demonstrated noninterference in the pattern of the cell nucleus, as well. Thus, our results suggest the possible application of these hybrid nanomaterials can be immensely explored for theranostic proposals in biomedicine.
更多
查看译文
关键词
nanotechnology,hybrid nanostructures,molybdenum disulfide,PEGylated MoS<sub>2</sub>,gold nanoparticles,theranostic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要