Development of a mobile independent solar power plant based on solid-state heterojunction photocells for agricultural purposes

Serekbol Zh. Tokmoldin,Vasiliy V. Klimenov, Dmitriy V. Girin,Nikolay A. Chuchvaga,Kazybek P. Aimaganbetov, Musabek P. Kishkenebaev, Svetlana N. Tarakanova,Nurlan S. Tokmoldin

Modern Electronic Materials(2022)

引用 0|浏览2
暂无评分
摘要
Mathematical simulation of temperature distribution on double-sided solar cells has been carried out. Differences in the configuration of photoelectric converters prove to solely amount to the fact that a double-sided solar cell has a more efficient heat sink at the rear side. Furthermore double-sided solar cells exhibit higher power conversion performance. Calculations confirm the correctness of giving preference to double-sided solar cells which is of great importance for the photoelectric converter design developed by us. Analysis of market-available photovoltaic technologies of solar energy to electric power conversion has led to the development of a photovoltaic converter on the basis of double-sided silicon heterojunction solar cells. The configuration developed is a moving platform having a photovoltaic cell array mounted on it and a light flux collector. A double-axis tracking system has been developed for the general case of planar attachment of solar cell modules. A 350 mm stroke drive provides for movement in the north-south direction and a 450 mm stroke drive, in the east-west direction. The task has been outlined to find the required arm for providing symmetrical positioning at the maximum rotation angle about the axis. As a result, technical solutions have been developed for the north-south and the east-west directions. Furthermore a schematic wiring diagram has been designed to implement the preset solar tracking system algorithm. The system is also fitted with a GPS/GLONASS module for system precision positioning and time synchronization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要