Quantification of DNA Damage in Different Tissues in Rats with Heart Failure

Arquivos Brasileiros de Cardiologia

Cited 8|Views0
No score
Abstract
Abstract Background: Chronic heart failure (CHF) is a complex syndrome which comprises structural and functional alterations in the heart in maintaining the adequate blood demand to all tissues. Few investigations sought to evaluate oxidative DNA damage in CHF. Objective: To quantify the DNA damage using the comet assay in left ventricle (LV), lungs, diaphragm, gastrocnemius and soleus in rats with CHF. Methods: Twelve male Wistar rats (300 to 330 g) were selected for the study: Sham (n = 6) and CHF (n = 6). The animals underwent myocardial infarction by the ligation of the left coronary artery. After six weeks, the animals were euthanized. It was performed a cell suspension of the tissues. The comet assay was performed to evaluate single and double strand breaks in DNA. Significance level (p) considered < 0.05. Results: The CHF group showed higher values of left ventricle end-diastolic pressure (LVEDP), pulmonary congestion, cardiac hypertrophy and lower values of maximal positive and negative derivatives of LV pressure, LV systolic pressure (p < 0.05). CHF group showed higher DNA damage (% tail DNA, tail moment and Olive tail moment) compared to Sham (p < 0.001). The tissue with the highest damage was the soleus, compared to LV and gastrocnemius in CHF group (p < 0.05). Conclusion: Our results indicates that the CHF affects all tissues, both centrally and peripherically, being more affected in skeletal muscle (soleus) and is positively correlated with LV dysfunction.
More
Translated text
Key words
Heart Failure,Rats,Rats Inbred Strains,Tissue Distribution,DNA Damage,Comet Assay
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined