A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space

Remote Sensing of Environment(2023)

引用 7|浏览52
暂无评分
摘要
Rice blast (RB, caused by the fungus Magnaporthe oryzae) is the most devastating disease in global rice production, and can cause significant yield losses and increasingly threaten global food security. Accurate detection of RB occurrence with a universal metric is crucial to facilitate early disease prevention and curtailing the disease expansion but has not been addressed to date. This study aimed to design a rice blast index (RIBI) for quantifying the disease index (DI) and tracking the smallholder rice blast dispersal over multiple spatial scales. To achieve this goal, a large dataset including leaf- and canopy-scale reflectance spectra and satellite imagery was acquired within the framework of seven independent campaigns over four years (2018–2021). Specifically, an extensive collection of Magnaporthe oryzae infected samples were analyzed to examine the specific spectral response to pathogen infection in paddy rice from leaf to near-ground canopy scales. Two variants of the RIBI were developed, which were RIBInir = (R753-R1102)/(R665 + R1102) and RIBIred = (R753-R1102)/(R665 + R1102) based on the single-band separability and exhaustive search of band combinations. They were subsequently evaluated for quantifying the RB occurrence from ground to space. Spatial cluster analysis was then integrated with the superior RIBI adjusted for Sentinel-2 imagery to explore the spatio-temporal dynamics of pathogen infection, and to reveal the within-field hotspots of potential rice blast dispersal in smallholder farms.
更多
查看译文
关键词
Rice blast,Disease-specific vegetation index,Hyperspectral,Multi-temporal analysis,Hot-spot analysis,Crop disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要