谷歌浏览器插件
订阅小程序
在清言上使用

Anti-seizure gene therapy for focal cortical dysplasia

Amanda Almacellas Barbanoj, Robert T. Graham, Benito Maffei, Jenna C. Carpenter, Marco Leite, Justin Hoke, Felisia Hardjo, James Scott-Solache, Christos Chimonides, Stephanie Schorge, Dimitri M. Kullmann, Vincent Magloire, Gabriele Lignani

Brain(2024)

引用 1|浏览26
暂无评分
摘要
Focal cortical dysplasias are a common subtype of malformation of cortical development, which frequently presents with a spectrum of cognitive and behavioural abnormalities as well as pharmacoresistant epilepsy. Focal cortical dysplasia type II is typically caused by somatic mutations resulting in mammalian target of rapamycin (mTOR) hyperactivity, and is the commonest pathology found in children undergoing epilepsy surgery. However, surgical resection does not always result in seizure freedom, and is often precluded by proximity to eloquent brain regions. Gene therapy is a promising potential alternative treatment and may be appropriate in cases that represent an unacceptable surgical risk. Here, we evaluated a gene therapy based on overexpression of the Kv1.1 potassium channel in a mouse model of frontal lobe focal cortical dysplasia. An engineered potassium channel (EKC) transgene was placed under control of a human promoter that biases expression towards principal neurons (CAMK2A) and packaged in an adeno-associated viral vector (AAV9). We used an established focal cortical dysplasia model generated by in utero electroporation of frontal lobe neural progenitors with a constitutively active human Ras homolog enriched in brain (RHEB) plasmid, an activator of mTOR complex 1. We characterized the model by quantifying electrocorticographic and behavioural abnormalities, both in mice developing spontaneous generalized seizures and in mice only exhibiting interictal discharges. Injection of AAV9-CAMK2A-EKC in the dysplastic region resulted in a robust decrease (similar to 64%) in the frequency of seizures. Despite the robust anti-epileptic effect of the treatment, there was neither an improvement nor a worsening of performance in behavioural tests sensitive to frontal lobe function. AAV9-CAMK2A-EKC had no effect on interictal discharges or behaviour in mice without generalized seizures. AAV9-CAMK2A-EKC gene therapy is a promising therapy with translational potential to treat the epileptic phenotype of mTOR-related malformations of cortical development. Cognitive and behavioural co-morbidities may, however, resist an intervention aimed at reducing circuit excitability. Focal cortical dysplasia (FCD) is the commonest pathology underlying malformations of cortical development resulting in intractable epilepsy. Almacellas Barbanoj et al. show that a gene therapy based on overexpression of the Kv1.1 potassium channel is highly effective in reducing spontaneous seizures in a mouse model of FCD type II.
更多
查看译文
关键词
epilepsy,focal cortical dysplasia,gene therapy,translation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要