谷歌浏览器插件
订阅小程序
在清言上使用

Characterization of unfrozen water in highly organic turfy soil during freeze–thaw by nuclear magnetic resonance

Engineering Geology(2023)

引用 7|浏览12
暂无评分
摘要
The unfrozen water content (ωu) is an important parameter affecting the hydrothermal-mechanical characteristics of soil and is of important significance with regard to engineering construction and environmental effects in cold regions. In this study, a widely-distributed special humus soil called turfy soil, with poor engineering geological properties, from seasonally frozen regions of northeastern China was investigated. Soil fundamental properties were determined, and ωu under various temperatures during a freeze–thaw process was measured by the nuclear magnetic resonance (NMR) method. Based on NMR theory and transverse relaxation time (T2) distribution curves, two thresholds were determined to divide the types of pore water in soil. Soil freezing characteristic curves (SFCC) of the total and pore water were drawn, and changes in the internal microstructure and pore characteristics of the soil during the freeze–thaw process were analyzed. The results showed that a drastic phase change within the soil occurs during −2 °C to −4 °C, and the freezing process can be divided into three stages. The formation of small pores and the connection of large pores make the soil looser after freeze–thaw. The division of pore water and variation in ωu show that freezing starts from large pores, while thawing starts from small pores. The capillary water content significantly decreases after freeze–thaw, and the bulk water content tends to increase. At freezing Stage I, ωu is closely related to the initial properties of the soil, whereas ωu at −3 °C almost determines the value of ωu during subsequent freeze–thaw. Finally, a ωu-power function for turfy soil was proposed, and good fitting results were obtained for both freezing and thawing soil. This work can serve as the basis of studies on soil with high organic matter content as well as soil unfrozen water content during freeze–thaw cycles in cold regions.
更多
查看译文
关键词
Turfy soil,Unfrozen water,NMR,Freeze–thaw process,Soil properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要