Chrome Extension
WeChat Mini Program
Use on ChatGLM

Low‐temperature preferential CO oxidation in a hydrogen‐rich stream over Pt‐NaY and modified Pt‐NaY catalysts for fuel cell application

Fuel Cells(2023)

Cited 1|Views5
No score
Abstract
Preferential oxidation of CO (CO-PROX) in the hydrogen-rich stream has been carried out over Pt-NaY catalysts containing various Pt loadings along with Fe, Co, and Au. Catalysts have been characterized with inductively coupled plasma-atomic emission spectroscopy, Brunauer, Emmett, and Teller surface area, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, and Pt dispersion. CO-PROX activities and CO oxidation selectivities are observed to increase with an increase in Pt content. Pt-NaY catalyst with 0.75 wt.% Pt loading shows maximum CO-PROX activity at low temperatures. An increase in space velocity decreases the CO and O-2 conversions, but CO oxidation selectivity increases. A decrease in activity is observed when reformat gas contains around 20% H2O. During the stability test, no change in CO and O-2 conversions is observed, but a small increase in the CO oxidation selectivity is noticed after 10 h indicating that the Pt-NaY catalyst is a promising candidate for CO-PROX reaction in a hydrogen-rich stream. The Pt-Fe-NaY catalyst shows better activity than the Pt-NaY catalyst but starts deactivating after 10 h. However, activity is observed to decrease over Pt-Co-NaY and Pt-Au-NaY catalysts. Pt-Fe-NaY catalyst with 0.75 and 0.35 wt.% Pt and Fe, respectively, shows better CO-PROX activity at a temperature of 75 degrees C.
More
Translated text
Key words
catalysis,CO oxidation,experimental results,flow bed,fuel cell applications,hydrogen,X-ray photoelectron spectroscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined