Towards further understanding the structural insights of isoxazoles analogues against leishmaniasis using QSAR, molecular docking and molecular dynamics model

Journal of the Indian Chemical Society(2023)

引用 1|浏览0
暂无评分
摘要
Leishmaniasis is one of the most well-known neglected infectious diseases, which is severe problem for public health. Heterocyclic derivatives are known to displays wide range of pharmacology activities including isoxazole ring that exhibit antileishmanial activity. Quantitative structure-activity relationship (QSAR) molecular docking and molecular dynamics are computational approaches to identify the relationships between structural properties and binding affinity of compounds. In the given paper series of 59, 4-aminomethyl 5-aryl-3-substituted isoxazoles were used to identify the structural insights and to find the binding affinity with protein. The designed model produced statistically significant results with of R2 = 0.72, R2adj = 0.65, and Q2LMO = 0.72. Structure activity relationship (SAR) revealed that substitution of hydrophobic and steric groups may enhance the biological activity of compounds as antiprotozoal agents. Most potent compound formed hydrogen bonds with active amino acids Arg 87, Arg 104, Gly 112, His 117, Gly 118 and Asp 120. Molecular dynamics simulation (150 ns) on the docked complex of most active compound 3ba and 6 ab supported in the exploration of binding. Further MMPBSA investigations utilising MD trajectories verified compound 3bc higher binding affinity for nucleoside diphosphate kinases. The given strategies of computational studies could be an encouraging way for designing therapeutic targets against leishmaniasis.
更多
查看译文
关键词
Leishmaniasis,Substituted isoxazoles,QSAR,Docking,Molecular dynamics,MM-PBSA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要