Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons

M. Filzinger, S. Dörscher, R. Lange,J. Klose, M. Steinel,E. Benkler,E. Peik, C. Lisdat,N. Huntemann

arxiv(2023)

引用 6|浏览0
暂无评分
摘要
We present improved constraints on the coupling of ultralight bosonic dark matter to photons based on long-term measurements of two optical frequency ratios. In these optical clock comparisons, we relate the frequency of the ${}^2S_{1/2} (F=0)\leftrightarrow {}^2F_{7/2} (F=3)$ electric-octupole (E3) transition in $^{171}$Yb$^{+}$ to that of the ${}^2S_{1/2} (F=0)\leftrightarrow \,{}^2D_{3/2} (F=2)$ electric-quadrupole (E2) transition of the same ion, and to that of the ${}^1S_0\leftrightarrow\,{}^3P_0$ transition in $^{87}$Sr. Measurements of the first frequency ratio $\nu_\textrm{E3}/\nu_\textrm{E2}$ are performed via interleaved interrogation of both transitions in a single ion. The comparison of the single-ion clock based on the E3 transition with a strontium optical lattice clock yields the second frequency ratio $\nu_\textrm{E3}/\nu_\textrm{Sr}$. By constraining oscillations of the fine-structure constant $\alpha$ with these measurement results, we improve existing bounds on the scalar coupling $d_e$ of ultralight dark matter to photons for dark matter masses in the range of about $ 10^{-24}-10^{-17}\,\textrm{eV}/c^2$. These results constitute an improvement by more than an order of magnitude over previous investigations for most of this range. We also use the repeated measurements of $\nu_\textrm{E3}/\nu_\textrm{E2}$ to improve existing limits on a linear temporal drift of $\alpha$ and its coupling to gravity.
更多
查看译文
关键词
ultralight bosonic dark matter,photons,atomic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要