谷歌Chrome浏览器插件
订阅小程序
在清言上使用

A Scalable Heat Pump Film with Zero Energy Consumption.

Polymers(2022)

引用 0|浏览3
暂无评分
摘要
Radiative cooling is an effective technology with zero energy consumption to alleviate climate warming and combat the urban heat island effect. At present, researchers often use foam boxes to isolate non-radiant heat exchange between the cooler and the environment through experiments, so as to achieve maximum cooling power. In practice, however, there are challenges in setting up foam boxes on a large scale, resulting in coolers that can be cooled below ambient only under low convection conditions. Based on polymer materials and nano-zinc oxide (nano-ZnO, refractive index > 2, the peak equivalent spherical diameter 500 nm), the manufacturing process of heat pump film (HPF) was proposed. The HPF (4.1 mm thick) consists of polyethylene (PE) bubble film (heat transfer coefficient 0.04 W/m/K, 4 mm thick) and Ethylene-1-octene copolymer (POE) cured nano-ZnO (solar reflectance ≈94% at 0.075 mm thick). Covering with HPF, the object achieves 7.15 °C decreasing in normal natural environment and 3.68 °C even under certain circumstances with high surface convective heat transfer (56.9 W/m/K). HPF has advantages of cooling the covered object, certain strength (1.45 Mpa), scalable manufacturing with low cost, hydrophobic characteristics (the water contact angle, 150.6°), and meeting the basic requirements of various application scenarios.
更多
查看译文
关键词
net zero energy consumption,polyethylene,radiation cooling,thermal insulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要