Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones.

Yezhen Yuan,Kaimin Niu,Bo Tian,Lihui Li, Jianrui Ji, Yunxia Feng

Materials (Basel, Switzerland)(2022)

Cited 0|Views3
No score
Abstract
In order to address the problem of the durability deficiency of concrete in wave splash zones in a harsh marine environment, this paper investigates the effects of coupled carbonation, sulfate, and chloride salts on the strength, capillary water absorption, and ion migration properties of cement concrete incorporated with metakaolin, and characterizes the pore structural changes with the mercury-pressure method and AC impedance technique. The results show that, compared with a single chloride salt environment, the improvement in mortar strength and impermeability with carbonation coupling is almost positively correlated with the calcium content in the specimen, and renders its pore structure more refined and denser. In contrast, the presence of sulfate reduces mortar strength and increases the ion migration coefficient. When the three factors of sulfate, carbonation, and chloride salt were coupled, damage to the strength and pore structure of the specimens was the most significant, but the specimen incorporated with 30% metakaolin had its strength improved compared with the blank group specimen; from the perspective of pore structural parameters and transport coefficient, the microstructure was denser, and the impermeability was significantly improved.
More
Translated text
Key words
carbonation,pore structure,sulfate,three-factor coupled
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined