Cobalt Single-Atom Nanozyme Co-Administration with Ascorbic Acid Enables Redox Imbalance for Tumor Catalytic Ablation

ACS Biomaterials Science & Engineering(2023)

引用 3|浏览6
暂无评分
摘要
The elevated antioxidant defense system in cancer cells can lead to resistance to treatments involving ROS. Breaking the redox balance of the cell system through a "open up the source and regulate the flow" strategy can inhibit the growth of cancer cells and thus design a cancer treatment strategy. Here, cobalt single atom-supported N-doped carbon nanozymes (Co SA-N/C) were synthesized via a simple sacrificial template method, which can mimic the properties of ascorbate oxidase and glutathione oxidase effectively. The synthesized Co SA-N/C can induce the generation of active oxygen by accelerating the oxidation of ascorbic acid (AA) and destroy the endogenous active oxygen scavenging system by consuming the main antioxidant, glutathione (GSH). In-depth in vitro and in vivo investigations indicate that compared with solo therapy, Co SA-N/C together with AA can significantly enhance the anti-tumor efficiency by simultaneously elevating oxidative stress and consuming the overexpressed glutathione (GSH) through the redox reaction catalyzed by Co SA-N/C. This work provides a promising route for developing nanozyme-guided and ascorbate-based antitumor agents.
更多
查看译文
关键词
ascorbic acid,cancer cell proliferation,glutathione,nanozyme,redox balance,single atom
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要