Leveraging family data to design Mendelian Randomization that is provably robust to population stratification

Genome Research(2023)

Cited 0|Views24
No score
Abstract
Mendelian Randomization (MR) has emerged as a powerful approach to leverage genetic instruments to infer causality between pairs of traits in observational studies. However, the results of such studies are susceptible to biases due to weak instruments as well as the confounding effects of population stratification and horizontal pleiotropy. Here, we show that family data can be leveraged to design MR tests that are provably robust to confounding from population stratification, assortative mating, and dynastic effects. We demonstrate in simulations that our approach, MR-Twin, is robust to confounding from population stratification and is not affected by weak instrument bias, while standard MR methods yield inflated false positive rates. We applied MR-Twin to 121 trait pairs in the UK Biobank dataset and found that MR-Twin identifies likely causal trait pairs and does not identify trait pairs that are unlikely to be causal. Our results suggest that confounding from population stratification can lead to false positives for existing MR methods, while MR-Twin is immune to this type of confounding. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined