Application of deep generative model for design of Pyrrolo[2,3-d] pyrimidine derivatives as new selective TANK binding kinase 1 (TBK1) inhibitors.

European journal of medicinal chemistry(2022)

引用 0|浏览3
暂无评分
摘要
The deep conditional transformer neural network SyntaLinker was applied to identify compounds with pyrrolo[2,3-d]pyrimidine scaffold as potent selective TBK1 inhibitor. Further medicinal chemistry optimization campaign led to the discovery of the most potent compound 7l, which exhibited strong enzymatic inhibitory activity against TBK1 with an IC50 value of 22.4 nM 7l had a superior inhibitory activity in human monocytic THP1-Blue cells reporter gene assay than MRT67307. Furthermore, 7l significantly inhibited TBK1 downstream target genes cxcl10 and ifnβ expression in THP1 and RAW264.7 cells induced by poly (I:C) and lipopolysaccharide, respectively. This study suggested that combination of deep conditional transformer neural network SyntaLinker and transfer learning could be a powerful tool for scaffold hopping in drug discovery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要