Advancing biological processing for valorization of plastic wastes

Renewable and Sustainable Energy Reviews(2022)

引用 4|浏览16
暂无评分
摘要
The useful applications of plastics are as significant as the problems associated with their disposal. Current waste management strategies are ineffective at preventing the flow of plastics into landfills, wastewater treatment, and the environment. Despite the importance of recycling technologies, most plastics are used for consumables and are discarded after limited usage. Moreover, only certain plastics are recycled, and those that are generally yield lower value products. Discovering alternative routes for valorizing plastic wastes is essential. Emerging research involves the use of biocatalysts (i.e., enzymes and microorganisms) to produce valuable products like specialty polymers, biosurfactants, and drug precursors from these feedstocks. These bioprocesses commonly integrate physio-chemical pretreatments (to generate biologically reactive intermediates) and biological upgrading (to convert intermediates to products). Herein, publications that explore plastic deconstruction technologies and bioprocesses are reviewed with an emphasis on plastic waste valorization. Understanding how microorganisms metabolize the intermediates of plastic degradation and manage their inhibitory effects is a prerequisite for engineering bioprocesses. For these heterogeneous wastes, a paradigm shift from axenic cultivation of microorganisms to cultivation of microbial consortia may benefit conversion efficiency and stress resilience. Thus, a summary is provided for metabolic pathways and constituent enzymes required to synthesize biofuels, biomaterials, and chemicals from biologically reactive intermediates. Colossal challenges associated with the use of plastics as feedstocks for direct biological processing highlight the need for integrating physical, chemical, and biological technologies.
更多
查看译文
关键词
Up-cycling,Polyethylene,Polypropylene,Polyethylene terephthalate,Polystyrene,Polycarbonate,Polyurethane,Polyvinyl chloride,Synthetic biology,Chemical recycling,Microbial factories,Waste valorization,Pretreatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要