Network pharmacology, molecular docking and bioinformatics reveal the mechanism of Tripterygii Wilfordii against Osteosarcoma.

Medicine(2022)

引用 2|浏览12
暂无评分
摘要
Osteosarcoma (OS) is a malignant bone tumor of mesenchymal origin. Tripterygii Wilfordii (TW) is a traditional Chinese medicine widely used for its anti-inflammatory and immunomodulatory effects. Various components of TW have been shown to have antitumor effects, however, no systematic study has been conducted to prove the anti-OS effects of TW. This study aimed to investigate the effects of TW on OS and its mechanism based on network pharmacology and molecular docking. The web pharmacology section includes the gathering of the active components of TW, the collection of predicted targets of TW and OS-related targets, the analysis of therapeutic targets of TW, the enrichment of gene ontology (GO), and the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG). The Veen diagram showed 451 targets for OS treatment in TW. The therapeutic target enrichment analysis results showed that TW treated OS via multiple targets and pathways. TW can affect OS proliferation, apoptosis, migration, infiltration, and angiogenesis through a signaling network formed by hub genes that cascade through numerous signaling pathways. In addition, molecular docking results showed that triptolide, kaempferol, and 5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin have relatively high potential to become drugs for patients with OS and improve the 5-year survival rate of patients with OS. Network pharmacology and molecular docking suggest that TW affects the biological behavior of OS through multiple pathways involving multiple targets, such as proliferation, apoptosis, migration, and infiltration. Upregulation of the cellular tumor antigen p53 (TP53) gene and downregulation of peroxisome proliferator-activated receptor gamma (PPARG) and signal transducer and activator of transcription 1-alpha/beta (STAT1) genes can prolong the survival time of patients with OS. Triptolide, kaempferol, and 5,8-Dihydroxy-7-(4-hydroxy-5 methyl-coumarin-3)-coumarin have a relatively high potential to become a treatment for patients with OS and improve 5-year survival of OS patients.
更多
查看译文
关键词
mechanism,molecular docking,network pharmacology,osteosarcoma,Tripterygii Wilfordii
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要