The impact of Zn vacancy on gas sensitivity of ZnSn(OH)6

Applied Surface Science(2023)

引用 2|浏览5
暂无评分
摘要
Regular octahedral pure ZnSn(OH)6 (ZHS) and ZHS with Zn vacancy (VZn-ZHS) are fabricated with hydrothermal method. The samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). The results are as follows: the obtained samples are ZHS, both the left shift of XRD (200) peak and the decline of crystalline can be ascribed to Zn vacancy (VZn); the morphology of the samples is regular octahedron and the surface is covered with steps-like stripes and small holes; the growth orientation of the crystal is [111]; the elements are evenly distributed and there are only Zn, Sn and O elements in the material. The gas sensing experiments show that the sensitivity of VZn-ZHS to 100 ppm triethylamine (TEA) is up to 69.25 at 280 °C under 36% relative humidity (RH), compared to ZHS of 30.84. The theoretical calculation shows that the band gap width and the electric resistance increases with the increase of Zn vacancies (VZn) which is consistent with the experimental results. Meanwhile, VZn can also decrease the work function of ZHS (200) surface, which is the theoretical basis for the improvement of gas sensitivity.
更多
查看译文
关键词
Zn vacancy,Crystal orientation,Band structure,Work function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要