Novel inverse opal Bi2WO6/Bi2O3 S-scheme heterojunction with efficient charge separation and fast migration for high activity photocatalysis

Applied Surface Science(2023)

Cited 18|Views26
No score
Abstract
For enhancing the photocatalytic performance, efficient separation and rapid migration of photogenerated charge carriers are essential. This study adopted a hydrothermal technique followed by calcination to remove the template to prepare a novel IOBi2WO6/Bi2O3 S-scheme heterojunction with a distinctive inverse opal (IO) structure. Under simulated solar irradiation, the obtained IOBi2WO6/Bi2O3 heterojunction demonstrated improved photocatalytic performance toward photocatalytic hydrogen (H2) evolution. Among all the samples, the IOBi2WO6/15Bi2O3 possessed the highest photocatalytic H2 evolution activity and reached up to 312.56 mol g-1h−1, which was 9.7 and 3.4 times higher than that of the pristine Bi2WO6 (32.15 mol g-1h−1) and IOBi2WO6 (92.15 mol g-1h−1), respectively. Moreover, the apparent quantum efficiency (AQE) of IOBi2WO6/15Bi2O3 is 8.9 % at 420 nm.The enhanced photocatalytic activity is attributed to the synergy between the formation of the Bi2WO6/Bi2O3 S-scheme heterojunction and the construction of the IO structure. Based on the S-scheme mechanism, the mechanism and driving force of charge carriers’ transfer and separation in this study were investigated and discussed in detail by a density functional theory (DFT) calculation. This study demonstrates a very promising protocol to prepare the three-dimensional efficient charge carriers’ separation and fast migration heterojunction photocatalyst for practical applications.
More
Translated text
Key words
Bi2WO6/Bi2O3,S-scheme heterojunction,Inverse opal structure,Photocatalytic H2 evolution
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined