Ultrasensitive and multiplexed miRNA detection system with DNA-PAINT

Biosensors and Bioelectronics(2023)

Cited 9|Views11
No score
Abstract
MiRNAs hold great potential as biomarkers for the early detection and monitoring of diseases based on their differential expression profiles. Therefore, the sensitive, specific and accurate detection of miRNAs represents an emerging new tool to improve diagnosis and treatment of several diseases, cancer in particular. DNA origami-based miRNA detection is particularly advantageous as it allows to incorporate multiple attachment sites to capture different target miRNAs at the nanoscale. In this work, we present a DNA origami nanoarray system providing distance-dependent recognition of miRNAs by applying super-resolution microscopy technique; DNA-PAINT (point accumulation for imaging in nanoscale topography). The sensor can detect up to 4 miRNAs either separately or in combination based on the relative distance to the boundary markers on the structure using a single imager strand. The detection is highly sensitive, with a limit of detection down to the low femtomolar range (11 fM - 388 fM) and has a large dynamic range up to 10 nM without need for amplification. Moreover, our detection system can discriminate single base mismatches with low false positive rates. Using our strategy, we demonstrate the detection of endogenous miRNAs from cell extracts of cancer cell lines and plasma from breast cancer patients. Overall, we developed an ultrasensitive and amplification-free, DNA-PAINT imaging-based miRNA detection method using DNA origami nanoarray system for the detection of breast-cancer associated miRNAs which potentially provides a sensitive and accurate alternative to the current multiplexed diagnostic technologies.
More
Translated text
Key words
DNA nanotechnology,DNA origami,DNA-PAINT,Super-resolution microscopy,miRNA detection,Biosensor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined