Controlled Fabrication of Micro-Chain Robot Using Magnetically Guided Arraying Microfluidic Devices

IEEE/RJS International Conference on Intelligent RObots and Systems (IROS)(2022)

引用 0|浏览23
暂无评分
摘要
The magnetic microrobot has become a promising approach in many biomedical applications due to its small volume, flexible motion, and untethered micromachines. The micro-chain robot is one of the most popular magnetic microrobots. However, the uncontrollable magnetic moment direction and quantity of the magnetic beads consisted in the existing self-assembled micro-chain robot limit their locomotion and applications. This paper proposed an on-chip micro-chain robot fabrication method to assemble the magnetic beads with controllable magnetic moment direction and quantity. The bead quantity can be controlled by the structure limits of the microchannel, and the direction of the magnetic moment can be adj usted by the integrated external magnetic field. The assembled magnetic beads are then glued by the hydrogel under UV exposure. The micro-chain robots with different quantities and magnetic moment directions of the magnetic beads were successfully fabricated and tested in experiments. Due to the array structure of the microfluidic device, batch manufacturing of low-cost magnetic robots was achieved in our method. The movement of dual-bead microrobots with two orthogonal magnetic moment directions was analyzed and compared. One of the dual-bead microrobots was applied in the transportation of the hydrogel module using pushing and pulling modes. It indicated that the proposed controllable on-chip fabrication of the magnetic micro-chain robots has the potential to enhance the microrobot ability in biomedical applications.
更多
查看译文
关键词
bead quantity,biomedical applications,controllable magnetic moment direction,controllable on-chip fabrication,dual-bead microrobots,existing self-assembled microchain robot,integrated external magnetic field,low-cost magnetic robots,magnetic beads,magnetic microrobot,magnetically guided arraying microfluidic devices,on-chip microchain robot fabrication method,orthogonal magnetic moment directions,popular magnetic microrobots,uncontrollable magnetic moment direction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要