Soil quality indicators for monitoring the short-term effects of mined soil rehabilitation strategies for bauxite

REVISTA BRASILEIRA DE CIENCIA DO SOLO(2023)

Cited 1|Views12
No score
Abstract
Mining is a significant driver of soil mobilization, which impacts its physical, chemical, and biological properties. Changes in land-use affect the distribution of organic matter fractions in stable aggregates, a process that is still poorly understood, especially in drastically altered areas. Recovering and monitoring soil quality to ensure the sustainable development of agricultural crops in these areas after mining is challenging. This study aimed to evaluate the influence of agronomic practices in soil rehabilitation in a bauxite-mined area after three years of field experiment installations through an assessment of organic properties in soil and aggregate classes; an attempt was also made at proposing and elaborating a Soil Quality Index (SQI), which encompasses the soil's physical, chemical, and organic properties. Different combinations of fertilization treatments and ground cover plants intercropping with coffee were evaluated as rehabilitation practices. The results showed that after three years of rehabilitation, when organic (OF), chemical (CF), and OF+CF fertilizers were applied to the areas of coffee intercropped with Brachiaria (B), they provided higher C and N contents to the soil and aggregates classes, as well as the compartments of soil organic matter (SOM). The minimum set of soil quality indicators for reclaimed bauxite-mined areas was composed of organic indicators: labile organic carbon (LOC) and mineral-associated organic matter (C-MOM); chemical indicators including pH and effective cation-exchange capacity (t), and physical indicators such as the bulk density (BD) and stable aggregates index in water (SAIW). The t and pH were the variables most sensitive to the management systems implanted during the rehabilitation of the mined area, and, therefore, were considered the best indicators of soil quality. Brachiaria was the cover plant that contributed most to improving the soil quality of mined bauxite areas by increasing the SQI, especially when fertilized. In general, when applied to the Brachiaria, the OF+CF fertilization presented a SQI of 0.78, differing statistically from that of the natural vegetation (1.00). Fertilizers and cover crops in association with coffee in the bauxite-mined areas improved the physical, chemical, and organic properties of the soil, thus representing a viable option for reconditioning mineral exploration areas.
More
Translated text
Key words
mined soil rehabilitation strategies,short-term
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined