Chrome Extension
WeChat Mini Program
Use on ChatGLM

Novel Bi2WO6/ZnSnO3 heterojunction for the ultrasonic-vibration-driven piezocatalytic degradation of RhB.

Environmental pollution (Barking, Essex : 1987)(2022)

Cited 0|Views9
No score
Abstract
This study designed and prepared a new piezoelectric catalytic nanomaterial, Bi2WO6/ZnSnO3, and applied it in piezocatalytic water purification. Results indicated that the composite had superior piezocatalytic efficiency and stability in rhodamine B (RhB) degradation under ultrasonic vibration. The Bi2WO6/ZnSnO3 sample with 10% Bi2WO6 had the optimum activity with a degradation rate of 2.15 h-1, which was 7.4 and 11.3 times that of ZnSnO3 and Bi2WO6, respectively. Various characterizations were conducted to study the morphology, structure, and piezoelectric properties of the Bi2WO6/ZnSnO3 composites and reveal the reasons for their improved piezocatalytic performance. Results showed that ZnSnO3 cubes were dispersed throughout the surface of Bi2WO6 nanosheets, which enhanced the specific surface area and facilitated the piezocatalytic reaction. Additionally, type-II heterojunction structures formed at the contact interface of Bi2WO6 and ZnSnO3, driving the migration of piezoelectric-induced electrons and holes. Accordingly, the separation efficiency of charge carriers improved, and the piezoelectric catalytic activity was significantly enhanced. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient piezoelectric catalyst.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined