Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing.

International journal of pharmaceutics(2022)

Cited 3|Views9
No score
Abstract
Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined