Threat-Aware Selection for Target Engagement.

IEEE Conference on Automation Science and Engineering (CASE)(2022)

引用 0|浏览4
暂无评分
摘要
This paper investigates the scheduling problem related to engaging a swarm of attacking drones with a single defensive turret. The defending turret must turn, with a limited slew rate, and remain facing a drone for a dwell time to eliminate it. The turret must eliminate all the drones in the swarm before any drone reaches the turret. In 2D, this is an example of a Traveling Salesman Problem with Time Windows (TSPTW) where the turret must visit each target during the window. In 2D, the targets and turret are restricted to a plane and the turret rotates with one degree of freedom. In 3D, the turret can pan and tilt, while the drones attempt to reach a safe zone anywhere along the vertical axis above the turret. This 3D movement makes the problem more challenging, since the azimuth angles of the turret to the drones vary as a function of time. This paper investigates the theoretical optimal solution for simple swarm configurations. It compares heuristic approaches for the path scheduling problem in 2D and 3D using a simulation of the swarm behavior. It provides results for an improved heuristic approach, the Threat-Aware Nearest Neighbor.
更多
查看译文
关键词
target,selection,threat-aware
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要