Evaluation of deep-learning image reconstruction for chest CT examinations at two different dose levels

Journal of applied clinical medical physics(2023)

Cited 2|Views12
No score
Abstract
AimsThe aims of the present study were to, for both a full-dose protocol and an ultra-low dose (ULD) protocol, compare the image quality of chest CT examinations reconstructed using TrueFidelity (Standard kernel) with corresponding examinations reconstructed using ASIR-V (Lung kernel) and to evaluate if post-processing using an edge-enhancement filter affects the noise level, spatial resolution and subjective image quality of clinical images reconstructed using TrueFidelity. MethodsA total of 25 patients were examined with both a full-dose protocol and an ULD protocol using a GE Revolution APEX CT system (GE Healthcare, Milwaukee, USA). Three different reconstructions were included in the study: ASIR-V 40%, DLIR-H, and DLIR-H with additional post-processing using an edge-enhancement filter (DLIR-H + E2). Five observers assessed image quality in two separate visual grading characteristics (VGC) studies. The results from the studies were statistically analyzed using VGC Analyzer. Quantitative evaluations were based on determination of two-dimensional power spectrum (PS), contrast-to-noise ratio (CNR), and spatial resolution in the reconstructed patient images. ResultsFor both protocols, examinations reconstructed using TrueFidelity were statistically rated equal to or significantly higher than examinations reconstructed using ASIR-V 40%, but the ULD protocol benefitted more from TrueFidelity. In general, no differences in observer ratings were found between DLIR-H and DLIR-H + E2. For the three investigated image reconstruction methods, ASIR-V 40% showed highest noise and spatial resolution and DLIR-H the lowest, while the CNR was highest in DLIR-H and lowest in ASIR-V 40%. ConclusionThe use of TrueFidelity for image reconstruction resulted in higher ratings on subjective image quality than ASIR-V 40%. The benefit of using TrueFidelity was larger for the ULD protocol than for the full-dose protocol. Post-processing of the TrueFidelity images using an edge-enhancement filter resulted in higher image noise and spatial resolution but did not affect the subjective image quality.
More
Translated text
Key words
chest,computed tomography,deep-learning image reconstruction,post-processing,ultra-low dose
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined