谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Biomechanical response of lumbar intervertebral disc in daily sitting postures: a poroelastic finite element analysis.

Computer methods in biomechanics and biomedical engineering(2022)

引用 1|浏览12
暂无评分
摘要
This study aims to establish and validate a poroelastic L4-L5 finite element model to evaluate the effect of different sitting postures and their durations on the mechanical responses of the disc. During the sustained loading conditions, the height loss, fluid loss and von-Mises stress gradually increased, but the intradiscal pressure decreased. The varying rates of aforementioned parameters were more significant at the initial loading stage and less so at the end. The predicted values in the flexed sitting posture were significantly greater than other postures. The extended sitting posture caused an obvious von-Mises stress concentration in the posterior region of the inter-lamellar matrix. From the biomechanical perspective, prolonged sitting may pose a high risk of lumbar disc degeneration, and therefore adjusting the posture properly in the early stage of sitting time may be useful to mitigate that. Additionally, upright sitting is a safer posture, while flexed sitting posture is more harmful.
更多
查看译文
关键词
Lumbar intervertebral disc,daily sitting postures,finite element analysis,poroelastic model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要