Structural basis of the TCR-pHLA complex provides insights into the unconventional recognition of CDR3β in TCR cross-reactivity and alloreactivity

Cell Insight(2022)

引用 0|浏览16
暂无评分
摘要
Evidence shows that some class I human leucocyte antigen (HLA) alleles are related to durable HIV controls. The T18A TCR, which has the alloreactivity between HLA-B∗42:01 and HLA-B∗81:01 and the cross-reactivity with different antigen mutants, can sustain long-term HIV controls. Here the structural basis of the T18A TCR binding to the immunodominant HIV epitope TL9 (TPQDLNTML180-188) presented by HLA-B∗42:01 was determined and compared to T18A TCR binding to the TL9 presented by the allo-HLA-B∗81:01. For differences between HLA-B∗42:01 and HLA-B∗81:01, the CDR1α and CDR3α loops adopt a small rearrangement to accommodate them. For different conformations of the TL9 presented by different HLA alleles, not like the conventional recognition of CDR3s to interact with peptide antigens, CDR3β of the T18A TCR shifts to avoid the peptide antigen but intensively recognizes the HLA only, which is different with other conventional TCR structures. Featured sequence pairs of CDR3β and HLA might account for this and were additionally found in multiple other diseases indicating the popularity of the unconventional recognition pattern which would give insights into the control of diseases with epitope mutating such as HIV.
更多
查看译文
关键词
cdr3β,tcr-phla,cross-reactivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要