Roots are the key for soil C restoration: A comparison of land management in the semiarid Argentinean Pampa

Ileana Frasier,Florencia Magali Barbero,Carolina Perez-Brandan, Maria Florencia Gomez,Romina Fernandez, Alberto Raul Quiroga,Gabriela Posse-Beaulieu, Silvina Restovich, Jose Meriles, Dannae Lilia Serri, Eva Lucia Margarita Figuerola,Elke Noellemeyer, Silvina Vargas-Gil

SOIL & TILLAGE RESEARCH(2024)

引用 0|浏览0
暂无评分
摘要
The objective of the study was to elucidate the relationship between soil management and carbon (C) stocks, and to identify the factors that intervene in the processes that favor C sequestration. The study was carried out on a farm in the Argentinean semiarid pampas with four land management practices (2019-2021): natural grassland (NG), crop-pasture rotation (RO), soybean monoculture (S-S) and with cover crop (S-CC). Aerial and root biomass were quantified at cover crop termination and soybean flowering. In addition, residues on soil surface were determined two times a year. In all cases, C and N contents were quantified. On composite soil samples, soil organic C (SOC), particulate C (POC), microbial biomass C and N (MBC, MBN), and soluble C and N were determined at 0-0.1 m depth. Results showed that NG had the highest and the most stable aboveground (3807.1 kg residue-C ha-1) and belowground inputs between years (4965.8 kg root-C ha-1). Similar results were observed in RO treatment during the first year (4221.0 kg root-C ha-1) diminishing by 67% after plowing for the annual crop in the second year reaching similar root-C values than S-CC and S-S (721.7 kg ha-1). S-S presented the lowest aboveground (49%) and belowground inputs (77%) compared to NG. Cover crops (S-CC) contributed with 31% and 14% of extra residue-C and root-C, respectively, compared to S-S. MBC showed a non-linear response with increases in root-C, reaching maximum carrying capacity of 110.6 +/- 4.3 kg MBC ha-1 with root-C inputs >= 2200 kg ha-1. Our results showed significant relationships between root-C and POC and SOC, while no relationships were found for aboveground residues. Increases in soluble N explained 86% of SOC variability. Both RO and S-CC reached the "4 per Mille" goal with an average annual SOC storage rate (Delta C) of 0.24 and 0.16 Mg ha-1 y-1, respectively, while S-S had SOC losses of 0.04 Mg ha-1yr-1.
更多
查看译文
关键词
Root C,Soil microbial biomass,SOC storage rates,Soluble N
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要