谷歌浏览器插件
订阅小程序
在清言上使用

Development of a QM/MM(ABEEM) Method Combined with a Polarizable Force Field to Investigate the Excision Reaction Mechanism of Damaged Thymine

Physical chemistry chemical physics/PCCP Physical chemistry chemical physics(2023)

引用 1|浏览15
暂无评分
摘要
This paper focuses on the development of a quantum mechanics/molecular mechanics method using the ABEEM polarizable force field (QM/MM(ABEEM) method) to investigate the excision reaction mechanism of damaged thymine. This method does not simply combine the QM method with the polarizable force field. A valence electronegativity piecewise function with the distance between atoms as a variable is introduced to describe the atomic partial charges, and changes greatly during the reaction process. At the same time, the charge transfer effect is treated using the condition of local charge conservation. Compared with the traditional QM/MM method, the QM/MM(ABEEM) method can more accurately simulate the polarization effect and charge transfer effect in the reaction process. Focusing on the controversial problems of the excision of damaged bases, six reaction pathways were designed for monofunctional and difunctional deglycosylation of neutral bases and protonated bases. The results show that the QM/MM(ABEEM) method accurately simulates the polarization effect, charge transfer effect, activation energy and other properties of the reaction process. The process in which the active residue Asp activates the nucleophile H2O to attack the protonated base is the preferred path. The average activation energy and free activation energy of the protonated base are 7.00-14.00 kcal mol-1 lower than that of the neutral base. The study in this paper is helpful to understand the mechanism of repair enzymes in repairing bases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要