谷歌浏览器插件
订阅小程序
在清言上使用

Waveform Design Using Coprime Frequency-Modulated Pulse Trains for Reverberation Suppression of Active Sonar

Journal of Marine Science and Engineering(2022)

引用 0|浏览7
暂无评分
摘要
Over the last two decades, low-frequency active sonar has become an attractive tool for underwater target detection. The reverberation to signal ratio (RSR) of transmitted waveforms is an important factor affecting the detection capability of low-frequency active sonar. Therefore, reasonable waveform design for reverberation suppression of active sonar is an important topic. Pulse trains of linear frequency-modulated (PTFM) waveforms have been proposed and manifested their good performance in suppressing reverberation. The number of sub-pulses is positively related to the reverberation to signal ratio; the lower the number of sub-pulses, the lower the reverberation to signal ratio. However, to avoid ambiguity in a Doppler measurement, the PTFM waveforms have a requirement for the number of sub-pulses to be satisfied, which prevents its reverberation suppression performance from being further improved. In this paper, we propose a coprime pulse train of linear frequency-modulated (CPTFM) waveform, which reduces the number of sub-pulses to some extent. Therefore, the ability of reverberation suppression of the CPTFM waveform can be improved. The RSR was chosen as the metric to evaluate the waveform’s ability to suppress reverberation, and the theoretical formula for the RSR of the CPTFM waveform was derived in zone A and B. With the overlap of zones A and B brought about by the decrease in the number of sub-pulses, the average RSR of zones A and B is used in this paper to evaluate the reverberation suppression ability of the waveform. The simulation experiment shows that the proposed CPTFM waveform decreases the average RSR by 7 dB and 20 dB in comparison to the reference PTFM waveform and continuous waveform (CW), which is consistent with the theoretical results by the derived formulas.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要