Step-Counting Accuracy of a Commercial Smartwatch in Mild-to-Moderate PD Patients and Effect of Spatiotemporal Gait Parameters, Laterality of Symptoms, Pharmacological State, and Clinical Variables.

Sensors(2023)

Cited 2|Views11
No score
Abstract
Commercial smartwatches could be useful for step counting and monitoring ambulatory activity. However, in Parkinson’s disease (PD) patients, an altered gait, pharmacological condition, and symptoms lateralization may affect their accuracy and potential usefulness in research and clinical routine. Steps were counted during a 6 min walk in 47 patients with PD and 47 healthy subjects (HS) wearing a Garmin Vivosmart 4 (GV4) on each wrist. Manual step counting was used as a reference. An inertial sensor (BTS G-Walk), placed on the lower back, was used to compute spatial-temporal gait parameters. Intraclass correlation coefficient (ICC) and mean absolute percentage error (MAPE) were used for accuracy evaluation and the Spearman test was used to assess the correlations between variables. The GV4 overestimated steps in PD patients with only a poor-to-moderate agreement. The OFF pharmacological state and wearing the device on the most-affected body side led to an unacceptable accuracy. The GV4 showed an excellent agreement and MAPE in HS at a self-selected speed, but an unacceptable performance at a slow speed. In PD patients, MAPE was not associated with gait parameters and clinical variables. The accuracy of commercial smartwatches for monitoring step counting might be reduced in PD patients and further influenced by the pharmacological condition and placement of the device.
More
Translated text
Key words
IMU,Parkinson’s disease,accuracy,gait,sensors,smartwatch,step count,step detection,validation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined