The clinical relevance of detectable plasma iron species in iron overload states and subsequent to intravenous iron-carbohydrate administration.

American journal of hematology(2023)

引用 0|浏览14
暂无评分
摘要
Many disorders of iron homeostasis (e.g., iron overload) are associated with the dynamic kinetic profiles of multiple non-transferrin bound iron (NTBI) species, chronic exposure to which is associated with deleterious end-organ effects. Here we discuss the chemical nature of NTBI species, challenges with measuring NTBI in plasma, and the clinical relevance of NTBI exposure based on source (iron overload disorder vs. intravenous iron-carbohydrate complex administration). NTBI is not a single entity but consists of multiple, often poorly characterized species, some of which are kinetically non-exchangeable while others are relatively exchangeable. Prolonged presence of plasma NTBI is associated with excessive tissue iron accumulation in susceptible tissues, with consequences, such as endocrinopathy and heart failure. In contrast, intravenous iron-carbohydrate nanomedicines administration leads only to transient NTBI appearance and lacks evidence for association with adverse clinical outcomes. Assays to measure plasma NTBI are typically technically complex and remain chiefly a research tool. There have been two general approaches to estimating NTBI: capture assays and redox-activity assays. Early assays could not avoid capturing some iron from transferrin, thus overestimating NTBI. By contrast, some later assays may have promoted the donation of NTBI species to transferrin during the assay procedure, potentially underestimating NTBI levels. The levels of transferrin saturation at which NTBI species have been detectable have varied between different methodologies and between patient populations studied.
更多
查看译文
关键词
detectable plasma iron species,iron overload states
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要