Chrome Extension
WeChat Mini Program
Use on ChatGLM

Molecular Dynamic Simulations and Experiments Study on the Mechanical Properties of HTPE Binders.

Polymers(2022)

Cited 3|Views0
No score
Abstract
The mechanical properties of HTPE binders have been systemically studied through combining the microstructure molecular simulations with macroscopic experiments. In this study, the crosslinking structures of HTPE binders were established by a computational procedure. Based on the optimized crosslinking models, the mechanical properties and the glass transition temperatures (T) of HTPE/N-100, HTPE/HDI, HTPE/TDI, and HTPE/IPDI binder systems were simulated; specifically, the T were 245.758 K, 244.573 K, 254.877 K, and 240.588 K, respectively. Then the bond-length distributions, conformation properties, cohesive energy densities, and fraction free volume were investigated to analyze how the microstructures of the crosslinking models influenced the mechanical properties of HTPE binders. Simultaneously, FTIR-ATR spectra analysis of HTPE binders proved that the special peaks, such as -NH and -NCO, could be seen in the crosslinking polyurethane structures synthesized between prepolymers and curing agents. The dynamic mechanical analysis was carried out, and it found that the T of HTPE/N-100, HTPE/HDI, HTPE/TDI, and HTPE/IPDI binder systems were -68.18 °C, -68.63 °C, -65.67 °C, and -68.66 °C, respectively. In addition, the uniaxial tension verified that both the ultimate stress and Young's modulus of HTPE binder systems declined with the rising temperatures, while the strains at break presented a fluctuant variation. When it was closer to glass temperatures, especially -40 °C, the mechanical properties of HTPE binders were more prominent. The morphology of the fractured surface revealed that the failure modes of HTPE binders were mainly intermolecular slipping and molecular chain breakage. In a word, the experimental results were prospectively satisfied using the simulations, which confirmed the accuracy of the crosslinking models between prepolymers and curing agents. This study could provide a scientific option for the HTPE binder systems and guide the design of polyurethanes for composite solid propellant applications.
More
Translated text
Key words
HTPE binders,crosslinking structures,mechanical properties,molecular dynamic simulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined