Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition.

Materials (Basel, Switzerland)(2022)

引用 0|浏览14
暂无评分
摘要
GaN nanowires (NWs) grown on silicon via atmospheric pressure chemical vapor deposition were doped with Cobalt (Co) by ion implantation, with a high dose concentration of 4 × 10 cm, corresponding to an average atomic percentage of ~3.85%, and annealed after the implantation. Co-doped GaN showed optimum structural properties when annealed at 700 °C for 6 min in NH ambience. From scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscope, and energy dispersive X-ray spectroscopy measurements and analyses, the single crystalline nature of Co-GaN NWs was identified. Slight expansion in the lattice constant of Co-GaN NWs due to the implantation-induced stress effect was observed, which was recovered by thermal annealing. Co-GaN NWs exhibited ferromagnetism as per the superconducting quantum interference device (SQUID) measurement. Hysteretic curves with Hc (coercivity) of 502.5 Oe at 5 K and 201.3 Oe at 300 K were obtained. Applied with a magnetic field of 100 Oe, the transition point between paramagnetic property and ferromagnetic property was determined at 332 K. Interesting structural and conducive magnetic properties show the potential of Co-doped GaN nanowires for the next optoelectronic, electronic, spintronic, sensing, optical, and related applications.
更多
查看译文
关键词
X-ray diffraction,atmospheric pressure chemical vapor deposition,cobalt-doped GaN nanowires,energy dispersive X-ray spectroscopy,scanning and transmission electron microscopy,superconducting quantum interference device
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要