Effects of genotype, sex, and feed restriction on the biochemical composition of chicken preen gland secretions and their implications for commercial poultry production

Journal of animal science(2023)

引用 0|浏览13
暂无评分
摘要
Preen gland secretions spread on the feathers contain various chemical compounds dominated by fatty acids (FAs) and volatile organic compounds (VOCs). These chemicals may significantly affect plumage condition, microbial and ectoparasitic load on feathers, and chemical communication of birds. However, how chemical composition of preen secretions varies in commercially produced chickens with respect to their genotype, sex, and feeding regime remain largely unknown, as well as the welfare implications for farmed poultry. We found that while polyunsaturated fatty acids in chicken preen secretions differed significantly with genotype (P << 0.001), saturated fatty acids and monounsaturated fatty acids varied with genotype-dependent preen gland volume (P < 0.01). Chickens of meat-type fast-growing Ross 308 genotype had reduced preen gland volume and lower proportions of all FA categories in their preen secretions compared with dual-purpose slow-growing ISA Dual chickens. A total of 34 FAs and 77 VOCs with tens of unique FAs were detected in preen secretions of both genotypes. While differences in the relative proportion of 6 of the 10 most dominant VOCs in chicken preen gland secretions were related to genotype (P < 0.001), only 1 of the 10 most dominant VOCs showed a sex effect (P < 0.01), and only 2 of the 10 most dominant VOCs showed a genotype-dependent effect of feed restriction (P < 0.05). Feed restriction had no effect on the relative proportion of any of the FAs in chicken preen gland secretions. Moreover, we found that meat-type Ross 308 preen secretions were dominated by VOCs, which are proven attractants for poultry red mite and may also increase infestation with other ectoparasites and negatively influence overall odor-mediated intraspecific communication and welfare. This study shows that no feeding management, but long-term genetic selection in commercial breeding may be the main cause of the differences in the biochemistry and function of chicken preen secretions. This might have negative consequences for chemosignaling, antiparasitic, and antimicrobial potential of preen secretions and can lead to increased susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, welfare, and productivity of commercially bred chickens. Selection-induced preen gland impairments must therefore be considered and compensated by proper management of the chicken farm and increased care about animal well-being. This study provides the first evidence for the role of genetic selection, preen gland volume, and their interaction on differences in the complex biochemistry of preen secretions and evaluates the implications for chemosignalling, antiparasitic, and antimicrobial function of preen secretions in commercially reared chickens. Lay Summary The preen gland is the largest sebaceous gland in birds, which produces a secretion that is spread on the feathers during comfort behavior. The secretion of the preen gland contains various chemical compounds that are responsible for mechanical, antimicrobial, and antiparasitic protection of the plumage and probably also for chemical communication between birds. However, there are only a limited number of studies on the composition and function of preen secretions in wild birds and only limited evidence in poultry. In this study, we compared the chemical composition of preen secretions in fast-growing meat-type and slow-growing dual-purpose chickens and evaluated the effect of sex, body condition, and feeding regime on preen secretion composition. Fast-growing meat-type chickens had smaller preen glands and lower proportions of all analyzed compounds in preen secretions compared to slow-growing dual-purpose chickens. In addition, compounds that are proven attractants for a poultry-threatening ectoparasite, poultry red mite, were predominant in the secretions of meat-type chickens. This study is the first to show that genetically distinct breeds of chickens can differ significantly in the biochemistry of preen secretions, which can influence susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, well-being, and productivity of commercially raised chickens.
更多
查看译文
关键词
antimicrobials,chemosignalling,ectoparasites,feather condition,uropygial gland,welfare
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要