Chrome Extension
WeChat Mini Program
Use on ChatGLM

Pre-denoising 3D Multi-scale Fusion Attention Network for Low-Light Enhancement

NEURAL PROCESSING LETTERS(2022)

Cited 0|Views25
No score
Abstract
Due to the underexposure, the lack of details and the noise issues, Low-light images always have a high degree of degradation. In this paper, we thoroughly study the degradation mechanism of low-light images and design a pre-denoising 3D multi-scale fusion attention network (P3DMFE) with Retinex decomposition theory. This work is divided into three modules, firstly, The proposed three-branch decomposition module decouples the original space into three sub-spaces: reflection decomposition, illumination decomposition and noise decomposition, where the noise decomposition allows us to obtain the higher-quality reflection map and illumination map. Secondly, the 3D multi-scale fusion improvement module removes the noise map and performs image reshaping, structure restoration and detail restoration on the combined reflection map and illumination map. Thirdly, the Illumination improvement module provides a suitable illumination map. The experimental results show that the proposed P3DMFE can not only enrich the details and improve the brightness and contrast of low-light images, but also have a good denoising effect. Specifically, the proposed method can achieve 22.04 PSNR, 0.84 SSIM, 1250.4 LOE and 5.03 NIQE on LOL dataset, which are the best performance compared with some state-of-the-art methods. The experiments on common low-light datasets such as NPE, VV, MIT5K, MEF, LIME, and DICM also verify the good generalization ability and superiority of the proposed method.
More
Translated text
Key words
Low-light image enhancement,Image decomposition,3D multi-scale fusion improvement,Brightness perception,Deep learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined