Lnc-TMEM132D-AS1 as a potential therapeutic target for acquired resistance to osimertinib in non-small-cell lung cancer.

Molecular omics(2023)

引用 2|浏览12
暂无评分
摘要
Acquired resistance is a major obstacle to the therapeutic efficacy of osimertinib in non-small-cell lung cancer (NSCLC). Current knowledge about the role of long non-coding RNAs (lncRNAs) in this phenomenon is insufficient. In this study, we screened the differentially expressed lncRNAs between osimertinib-sensitive and -resistant NSCLC cell lines, and determined that lnc-TMEM132D-AS1 was significantly upregulated in osimertinib-resistant NSCLC cells, as well as in the plasma of osimertinib-resistant NSCLC patients. Lnc-TMEM132D-AS1 markedly decreased the osimertinib sensitivity of NSCLC cells. After osimertinib exposure, it increased the cell proliferation and colony formation, decreased the cell apoptosis, and induced M2/G-phase cell cycle arrest. After identifying its cytoplasmic localization, a functional lnc-TMEM132D-AS1-miRNA-mRNA interaction network and a protein-protein interaction (PPI) network were constructed to analyze its putative target genes and biological functions. Lnc-TMEM132D-AS1 could directly bind to miR-766-5p and lead to the upregulation of ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1), resulting in an increase in cell proliferation. Moreover, upregulated ENTPD1 was also associated with enhanced tumor infiltration of immunosuppressive cells and poor prognosis in NSCLC patients. In summary, lnc-TMEM132D-AS1 plays a crucial role in osimertinib resistance. It may serve as a prognostic biomarker and a potential therapeutic target for acquired resistance to osimertinib in NSCLC.
更多
查看译文
关键词
osimertinib,lung cancer,potential therapeutic target,therapeutic target,lnc-tmem,non-small-cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要