Chrome Extension
WeChat Mini Program
Use on ChatGLM

Graph Learning and Its Applications: A Holistic Survey

CoRR(2023)

Cited 0|Views31
No score
Abstract
Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. These relationships endow graphs with uniqueness compared to conventional tabular data, as nodes rely on non-Euclidean space and encompass rich information to exploit. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios, including text, image, chemistry, and biology. Owing to its extensive application prospects, graph learning attracts copious attention from the academic community. Despite numerous works proposed to tackle different problems in graph learning, there is a demand to survey previous valuable works. While some researchers have perceived this phenomenon and accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy from the perspective of the composition of graph data and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, based on the current trend of techniques, we propose future directions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined