谷歌浏览器插件
订阅小程序
在清言上使用

Inhomogeneous random graphs with infinite-mean fitness variables

arXiv (Cornell University)(2023)

引用 0|浏览7
暂无评分
摘要
We consider an inhomogeneous Erd\H{o}s-R\'enyi random graph ensemble with exponentially decaying random disconnection probabilities determined by an i.i.d. field of variables with heavy tails and infinite mean associated to the vertices of the graph. This model was recently investigated in the physics literature in Garuccio et al. (2020) as a scale-invariant random graph within the context of network renormalization. From a mathematical perspective, the model fits in the class of scale-free inhomogeneous random graphs whose asymptotic geometrical features have been recently attracting interest. While for this type of graphs several results are known when the underlying vertex variables have finite mean and variance, here instead we consider the case of one-sided stable variables with necessarily infinite mean. To simplify our analysis, we assume that the variables are sampled from a Pareto distribution with parameter $\alpha\in(0,1)$. We start by characterizing the asymptotic distributions of the typical degrees and some related observables. In particular, we show that the degree of a vertex converges in distribution, after proper scaling, to a mixed Poisson law. We then show that correlations among degrees of different vertices are asymptotically non-vanishing, but at the same time a form of asymptotic tail independence is found when looking at the behavior of the joint Laplace transform around zero. Moreover, we present some findings concerning the asymptotic density of wedges and triangles, show a cross-over for the existence of dust (i.e. disconnected nodes), and identify a strongly connected regime in the ensemble.
更多
查看译文
关键词
inhomogeneous random graphs,fitness,infinite-mean
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要