谷歌浏览器插件
订阅小程序
在清言上使用

Optimizing tuberculosis treatment efficacy: comparing the standard regimen with Moxifloxacin-containing regimens

PLOS Computational Biology(2022)

引用 0|浏览24
暂无评分
摘要
Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim , our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process. Author summary Tuberculosis (TB) is a top global health concern and treatment for TB requires multiple antibiotics taken for long periods of time, which is challenging for TB patients. Therefore, identifying regimens that are more effective and more patient-friendly than the standard treatment is urgently needed. It is also known that non-compliance leads to the development of drug resistant TB. In this work, we pair computational and experimental models to predict new regimens for the treatment of TB that optimize how fast bacteria are cleared using minimal dosage. We apply novel approaches to this goal and validate our predictions using a non-human primate model. Our findings suggest that systems pharmacological modeling should be employed as a method to narrow the design space for drug regimens for tuberculosis and other diseases as well. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要