Image quality assessment along the one metre axial field-of-view of the total-body Biograph Vision Quadra PET/CT system for 18F-FDG

EJNMMI physics(2022)

Cited 3|Views2
No score
Abstract
Recently, total-body PET/CT systems with an extended axial field-of-view (aFOV) became commercially available which allow acquiring physiologic information of multiple organs simultaneously. However, the nominal aFOV may clinically not be used effectively due to the inherently reduced sensitivity at the distal ends of the aFOV. The aim of this study was to assess the extent of the useful aFOV of the Biograph Vision Quadra PET/CT system. A NEMA image quality (IQ) phantom mimicking a standard [18F]FDG examination was used. Image contrast and noise were assessed across the 106 cm aFOV of the Biograph Vision Quadra PET/CT system (Siemens Healthineers). Phantom acquisitions were performed at different axial positions. PET data were rebinned to simulate different acquisition times for a standard injected activity and reconstructed using different filter settings to evaluate the noise and images along the axial direction. Image noise and contrast were stable within the central 80 cm of the aFOV. Outside this central area, image contrast variability as well as image noise increased. This degradation of IQ was in particular evident for short acquisition times of less than 30 s. At 10 min acquisition time and in the absence of post-reconstruction filtering, the useful aFOV was 100 cm. For a 2 min acquisition time, a useful aFOV with image noise below 15
More
Translated text
Key words
Total-body PET,Biograph Vision Quadra,Extended axial FOV,Image quality
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined