Orbital Mixing between Colloidal Quantum Dots and Surface-Bound Molecules

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

Cited 0|Views22
No score
Abstract
Orbital mixing is paramount to chemistry as it plays a central role in bond formation. It is also important for technologies such as molecular doping of polymers, where the concept of fractional charge transfer is essentially orbital mixing between dopants and hosts. Likewise, it would be both fundamentally interesting and technologically relevant to investigate orbital mixing in emerging hybrid materials containing both inorganic and organic moieties. Here we report experimental observation of orbital mixing between valence band levels of strongly confined PbS quantum dots (QDs) and lowest unoccupied molecular levels of surface-bound high-electron affinity molecules (F4TCNQ), manifested as both an absorption blue-shift of PbS and the emergence of visible and infrared signatures of the fractional charge-transfer species of F4TCNQ. The degree of mixing can be controlled by varying the QD size or by varying the molecule/QD ratio for a specific QD size and can be quantitatively reproduced by a nondegenerate, two-level perturbation model.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined