Helium-enhanced planets along the upper edge of the radius valley

NATURE ASTRONOMY(2022)

引用 3|浏览4
暂无评分
摘要
The Kepler survey revealed that the radius distribution of sub-Neptunes is bimodal: there is a scarcity of planets between 1.5 and 2.0 R ⊕ . However, the mechanism that creates the valley is unknown. The low mean densities of sub-Neptunes imply that they formed within a few million years and accreted primordial envelopes. Because these planets receive X-ray and UV fluxes comparable to the gravitational binding energy of their envelopes, their atmospheres are susceptible to mass loss. We model the thermal and compositional evolution of sub-Neptunes undergoing escape with diffusive separation between hydrogen and helium and show that preferential loss of hydrogen can change their atmospheric compositions. Planets with radii between 1.6 and 2.5 R ⊕ can obtain atmospheric helium mass fractions in excess of 40% from billions of years of photoevaporation. Such enhancement can be detected through transmission spectroscopy, providing a novel observational test to determine whether atmospheric escape creates the radius valley.
更多
查看译文
关键词
Atmospheric dynamics,Exoplanets,Physics,general,Astronomy,Astrophysics and Cosmology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要