Kinetically Constrained Quantum Dynamics in Superconducting Circuits

PRX QUANTUM(2022)

引用 7|浏览2
暂无评分
摘要
We study the dynamical properties of the bosonic quantum East model at low temperature. We show that a naive generalization of the corresponding spin-1/2 quantum East model does not possess analogous slow dynamical properties. In particular, conversely to the spin case, the bosonic ground state turns out to be not localized. We restore localization by introducing a repulsive interaction term. The bosonic nature of the model allows us to construct rich families of many-body localized states, including coherent, squeezed, and cat states. We formalize this finding by introducing a set of superbosonic creation-annihilation operators that satisfy the bosonic commutation relations and, when acting on the vacuum, create excitations that are exponentially localized around a certain site of the lattice. Given the constrained nature of the model, these states retain memory of their initial conditions for long times. Even in the presence of dissipation, we show that quantum information remains localized within decoherence times that are tunable with the parameters of the system. We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits, which could be used in the near future to explore the dynamical properties of kinetically constrained models in modern platforms.
更多
查看译文
关键词
constrained quantum dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要