Acetylated Distarch Phosphate-Mediated Tough and Conductive Hydrogel for Antibacterial Wearable Sensors

ACS APPLIED MATERIALS & INTERFACES(2022)

Cited 7|Views4
No score
Abstract
Conductive, stretchable, and flexible hydrogel wearable sensors have attracted extensive attention in the fields of artificial intelligence and electronic equipment. However, it is an enormous challenge to fabricate conductive hydrogel sensors with biocompatibility, antibacterial properties, and toughness. Here, a highly conductive hydrogel with excellent toughness, good biocompatibility, and strong antibacterial properties was prepared by incorporating acetylated distarch phosphate (ADSP) into poly(vinyl alcohol) (PVA)/polyhexamethylene biguanide hydrochloride (PHMG). The addition of ADSP not only ionized sodium ions to make the hydrogel conductive but also provided abundant hydroxyl groups to form hydrogen bonds with PVA to improve the toughness of the hydrogel. Furthermore, PHMG endowed the hydrogel with antibacterial properties toward E. coli (Escherichia coli, Gram-negative bacteria) and S. aureus (Staphylococcus aureus, Gram-positive bacteria). Meanwhile, the hydrogel was implanted in mice for 14 days, and the surrounding tissue remained in good condition. More importantly, the hydrogel could detect ECG signals and electrical signals under different actions. This study affords a novel approach for exploiting wearable sensors with antibacterial properties and biocompatibility.
More
Translated text
Key words
wearable sensor,acetylated distarch phosphate,Gram-negative bacteria,Gram-positive bacteria,hydrogel
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined